- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Liu, Jia (2)
-
Partarrieu, Sebastian (2)
-
Shen, Hao (2)
-
Tang, Xin (2)
-
Wang, Xiao (2)
-
Bertoldi, Katia (1)
-
Ding, Jie (1)
-
Gong, Xian (1)
-
Hanna, Emma Bou (1)
-
He, Yichun (1)
-
Kim, Junsoo (1)
-
Kozinsky, Boris (1)
-
Le Floch, Paul (1)
-
Lee, Jongha (1)
-
Li, Na (1)
-
Lin, Zuwan (1)
-
Liu, Ren (1)
-
Lu, Nanshu (1)
-
Medina, Eder (1)
-
Molinari, Nicola (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Electronic devicesforrecording neuralactivityinthe nervoussyste m needto bescalableacrosslargespatialandte mporalscales whilealso providing millisecondandsingle-cellspatiote mporalresolution. H o w e v e r, e xi s ti n g hi g h- r e s ol u ti o n n e u r al r e c o r di n g d e vi c e s c a n n o t achievesi multaneousscalability on bothspatialandte mporallevels due toatrade-offbetweensensordensityand mechanicalflexibility. Here weintroduceathree-di mensional(3D)stackingi mplantableelectronic platfor m,basedonperfluorinateddielectricelasto mersandtissue-levelsoft multilayerelectrodes,thatenablesspatiote mporallyscalablesingle-cell neuralelectrophysiologyinthenervoussyste m. Ourelasto mersexhibit stable dielectric perfor mancefor overayearin physiologicalsolutions andare10,000ti messofterthanconventional plastic dielectrics. By leveragingthese uniquecharacteristics we developthe packaging of lithographednano metre-thickelectrodearraysina3Dconfiguration with across-sectionaldensityof7.6electrodesper100μ m2.Theresulting3D integrated multilayersoftelectrodearrayretainstissue-levelflexibility, reducingchronici m muneresponsesin mouse neuraltissues,and de monstratestheabilitytoreliablytrackelectricalactivityinthe mouse brain orspinalcord over months without disruptingani mal behaviour.more » « less
-
Tang, Xin; Zhang, Jiawei; He, Yichun; Zhang, Xinhe; Lin, Zuwan; Partarrieu, Sebastian; Hanna, Emma Bou; Ren, Zhaolin; Shen, Hao; Yang, Yuhong; et al (, Nature Communications)Abstract Current biotechnologies can simultaneously measure multiple high-dimensional modalities (e.g., RNA, DNA accessibility, and protein) from the same cells. A combination of different analytical tasks (e.g., multi-modal integration and cross-modal analysis) is required to comprehensively understand such data, inferring how gene regulation drives biological diversity and functions. However, current analytical methods are designed to perform a single task, only providing a partial picture of the multi-modal data. Here, we present UnitedNet, an explainable multi-task deep neural network capable of integrating different tasks to analyze single-cell multi-modality data. Applied to various multi-modality datasets (e.g., Patch-seq, multiome ATAC + gene expression, and spatial transcriptomics), UnitedNet demonstrates similar or better accuracy in multi-modal integration and cross-modal prediction compared with state-of-the-art methods. Moreover, by dissecting the trained UnitedNet with the explainable machine learning algorithm, we can directly quantify the relationship between gene expression and other modalities with cell-type specificity. UnitedNet is a comprehensive end-to-end framework that could be broadly applicable to single-cell multi-modality biology. This framework has the potential to facilitate the discovery of cell-type-specific regulation kinetics across transcriptomics and other modalities.more » « less
An official website of the United States government
